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Networks may, or may not, be wired to have a core that is both itself densely connected and central in terms
of graph distance. In this study we propose a coefficient to measure if the network has such a clear-cut
core-periphery dichotomy. We measure this coefficient for a number of real-world and model networks and find
that different classes of networks have their characteristic values. Among other things we conclude that
geographically embedded transportation networks have a strong core-periphery structure. We proceed to study
radial statistics of the core, i.e., properties of the n neighborhoods of the core vertices for increasing n. We find
that almost all networks have unexpectedly many edges within n neighborhoods at a certain distance from the
core suggesting an effective radius for nontrivial network processes.
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All systems consisting of pairwise-interacting entities can
be modeled as networks. This makes the study of complex
networks a very general and interdisciplinary area of statis-
tical physics �1�. One of the most important gains of the
recent wave of statistical network studies is the quantifica-
tion of large-scale network topology. Now, with the use of
just a few words and numbers, one can state the essential
characteristics of a huge network. A possible large-scale de-
sign principle is that one part of the network constitutes a
densely connected core that also is central in terms of net-
work distance, and the rest of the network forms a periphery.
In, for example, a network of airline connections you would
most certainly pass such a core airport on any many-flight
itinerary. It is known that a broad degree distribution can
create a core having such properties �2�. In this paper we
address the question if there is a tendency for such a struc-
ture in the actual wiring of the network. For example, if one
assumes degree to be, to a large extent, an intrinsic property
of the vertices, then is the network organized with a distinct
core-periphery structure or not? To give a quantitative an-
swer to this question our first step is to find a core with the
above mentioned properties—being highly interconnected
and having a high closeness centrality �3� �the inverse aver-
age distance between vertices of a subgraph and the rest of
the vertices�. Once such a subgraph is identified we calculate
its closeness centrality relative to the graph as a whole, and
subtract the corresponding quantity for the ensemble of ran-
dom graphs with the same set of degrees as the original
network �cf. Ref. �4��. If the resulting coefficient is positive
the network shows a pronounced core-periphery structure.
Once the core and periphery are distinguished one may pro-
ceed to investigate their function by looking at the statistical
properties of the n neighborhoods �the set of vertices on
distance n� of the core vertices. This paper starts by defining
the core-periphery coefficient and measure it for real-world
networks of numerous types, then proceeds by discussing
and measuring radial statistics.

We assume the network to be represented as a graph G
= �V ,E� with a set V of N vertices and a set E of M undi-
rected and unweighted edges. Since our analysis requires the
network to be connected we will henceforth identify G with

the largest connected component of the network. We also
remove self-edges and multiple edges.

The notion of network centrality is a very broad and many
measures have been proposed to capture different aspects of
the concept �20�. One of the simplest quantities is the close-
ness centrality �3�

CC�U� = ���d�i, j�� j�V \ �i��i�U�−1 �1�

of a subgraph U, where d�i , j� is the graph distance between
i and j. So we require a core to be a subgraph U with high
CC�U�, but also to be a well-defined cluster. Now, if there are
many facets of the centrality concept, there are even more
algorithms to identify graph clusters, each being a de facto
cluster definition �1�. For simplicity we choose the most ru-
dimentary cluster definition—the set of k cores. A k core is a
maximal subgraph with the minimum degree k. To calculate
a sequence of k cores is computationally cheaper �linear in M
�21�� than more elaborate clustering algorithms. So we let
our core Vcore�G� be the k core with maximal closeness and
define the core-periphery coefficient ccp as

ccp�G� =
CC�Vcore�G��

CC�V�G��
− 	CC�Vcore�G���

CC�V�G��� 

G��G�G�

, �2�

where G�G� is the ensemble of graphs with the same set of
degrees as G. The sequence of k cores is not necessarily
unique. We maximize CC�U� over mseq different sequences.
The mnull elements of G�G� can be obtained by randomiza-
tion of G in time and space of the order of M �22�. We use
mnull=1000 and mseq=10 for networks with N�5000, and
mnull=50 and mseq=3 for N�5000.

The correlation of degrees at either side of an edge is an
often studied quantity �4,23�. If there is a tendency for well-
connected vertices to connect to each other then there will be
highly interconnected clusters in the graph—one of the re-
quirements for a core-periphery structure in our sense. This
resemblance to the core-periphery structure makes the degree
correlations an interesting reference structure. A common
way to quantify the average degree-degree correlations is to
measure the assortative mixing coefficient �23�,
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r =
4�k1k2� − �k1 + k2�2

2�k1
2 + k2

2� − �k1 + k2�2 , �3�

where ki is the degree of the ith argument of a edge as it
appear in a list of E. Now, our null model is a random graph
conditioned to have the same degree sequence as the original
graph. So just as for ccp, we consider the deviation from our
null model and measure

�r�G� = r�G� − �r�G���G��G�G�. �4�

In Table I ccp and �r are displayed for a number of real-
world networks. We find that the core-periphery structure
and relative degree-degree correlations follow the different
classes of networks rather closely. Furthermore the core-
periphery structure and degree-degree correlations seem to
be quite independent network structures in practice. For ex-
ample, geographically embedded networks have a clear core-
periphery structure and weakly positive degree-degree corre-
lations, whereas social networks derived from affiliations
have slightly negative ccp values but very high �r values.
Most geographically embedded networks have the function

of transporting, or transmitting, something between the ver-
tices. Networks with a well-defined core �which most paths
pass through� and a periphery �covering most of the area� are
known to have good performance with respect to communi-
cation times �6�. Also networks of airline traffic �24� and the
hardwired Internet �8� are known to have well-defined cores
due to traffic-flow optimization. The class of one-mode pro-
jection networks �social networks constructed by linking
people that participate in something—movies, scientific re-
search, etc.—together� show slightly negative ccp values.
This can be explained by that there is a grouping of the
people on the basis of specialization �and, in student net-
works, also in grade� and thus no well-defined core. The
vertices in electronic communication networks are also
people but the network structures are quite different; the
degree-degree correlation is typically slightly negative, as is
the core-periphery coefficient. Information networks where
the edges refer to supporting information sources can be ex-
pected to be grouped into topics, thus the negative ccp. Food
webs are other stratified networks where a lack of a well-
defined core seems natural. The biochemical networks all
show negative ccp values.

TABLE I. The network sizes N and M, the core-periphery coefficient ccp, and the relative assortative mixing coefficient �r for a number
of networks. In the interstate network the vertices are American interstate highway junctions and two junctions are connected if there is a
road with no junction in between. The pipeline network is a similar network of junctions and gas pipes. In the airport data �obtained from
IATA www.iata.org� the vertices are airports and the edges represent airport pairs with a nonstop flight connection. The Internet figures are
averages of 15 AS-level graphs constructed from traceroute searches. The arXiv, board of directors, and Ajou students are constructed one-
mode projections from affiliation networks �where links goes from persons to e-prints, corporate boards, and university classes, respectively�.
The student network is averaged over graphs for 16 semesters. In the electronic communication networks one edge represent that at least one
of the vertices has contacted the other over some electronic medium. In the nd.edu data the vertices are HTML documents and the edges are
hyperlink. The citation graph is constructed from preprints in the field of high-energy physics �5�. The food webs are networks of water-
living species and an edge means that one species prey on the other. For the protein networks an edge means that two proteins bind to each
other physically. The metabolic and “whole cellular” networks consist of chemical substances and edges indicating that one molecule occur
in the same reaction as the other �the values for these networks are averages over 43 organisms from different domains of life�.

Network Ref. N M ccp �r

Geographical networks interstate highways 935 1315 0.231�1� 0.0851�5�
pipelines �6� 2999 3079 0.180�2� 0.073�2�

streets, Stockholm �7� 3325 5100 0.255�1� 0.080�1�
Airport 449 2795 0.0523�3� 0.0910�3�
Internet �8� 1968�66� 4051�121� 0.045�2� 0.009�3�

One-mode projections of affiliation networks arXiv �9� 48561 287570 −0.08�3� 0.361�3�
board of directors �10� 6193 43074 −0.037�2� 0.280�2�

Ajou University students �11� 7285�128� 75898�6566� −0.08�1� 0.66�4�

Electronic communication email, Ebel et al. �12� 39592 57703 −0.229�4� −0.001�4�
Internet community, pussokram.com �13� 28295 115335 −0.183�5� −0.005�5�

Reference networks WWW, nd.edu �14� 325729 1090108 −0.027�3� −0.003�3�
HEP citations 27400 352021 −0.10�1� 0.03�1�

Food webs Little Rock Lake �15� 92 960 0.005�6� −0.0141�6�
Ythan Estuary �16� 134 593 −0.020�1� −0.0153�9�

Biochemical networks Drosophila protein �17� 2915 4121 −0.035�2� 0.003�1�
S. cervisiae protein �18� 3898 7283 −0.249�1� −0.069�1�
metabolic networks �19� 427�27� 1257�88� −0.002�6� 0.006�1�
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In addition to the real-world networks of Table I we also
measure the core-periphery coefficient for a few network
models. For simple random graphs �20� where N vertices are
randomly connected by M edges, defining an ensemble
G�N ,M� of graphs, G�G� is precisely the elements of
G�N ,M� with the same degree sequence as G. So on average,
ccp will be zero for random graphs. A popular network model
is the Barabási-Albert �BA� model �25� where the graphs are
grown by iteratively adding new vertices with edges to old
vertices with a probability proportional to the degree of the
old vertices. In Fig. 1 we see that ccp tends to zero �or a value
very close to zero� for BA model networks. The BA model
has an assortative mixing coefficient r that tends to zero as N
grows �23�. From this one sees that the high-degree vertices
are not more interconnected than can be expected from their
degrees. We also investigate the Watts-Strogatz’ small-world
network model �26� were one end of the edges of a circulant
�20� is rewired with a certain probability �0.01 in our case�.
Just as for the BA model ccp converges to zero �see Fig. 1�.
This is not so surprising, in the WS model’s starting point,
the circulant, every vertex is in the same position. The rewir-
ing procedure does not aggregate vertices to a well-defined
core either.

A well-defined core is a useful starting point for a radial
examination of the network. By plotting quantities averaged
over the n neighborhoods of the core vertices as functions of

n one can get an idea of the respective purposes of the core
and periphery. This kind of statistics is naturally more sen-
sible the larger ccp is, but even for slightly negative ccp val-
ues it may be informative. To get a rough view of the radial
network organization we plot the average degree of the ver-
tices in the n neighborhood of core vertices as a function of
n in Fig. 2. We include the corresponding results for our null
model. The core vertices themselves almost always get
higher average degree for the null model than the real-world
networks �5–10 % higher for the networks of Fig. 2�. For the
first neighborhood the situation is reversed—the real-world
networks have higher �k� than the null model. Then the de-
grees are decreasing monotonically; typically faster for the
null model networks. One can imagine different functions of
the peripheral vertices—either they are just conveying infor-
mation, traffic, etc., to and from the core; or they are, just as
the core vertices, involved in the general network processes,
only less intensely. To understand this we measure the aver-
age value of the quantity,

��i,n� = M�Kn�i��/EM�Kn�i�� �5�

over the core vertices; M�Kn�i�� is the number of edges
within i’s n neighborhood Kn�i� and EM�Kn�i�� is the ex-
pected number of edges in a set of vertices of the same
degrees as Kn�i� in a random graph of the same degree se-
quence as the original graph G. To calculate EM we rely on
the same random sampling as for the ccp calculation. To save
time one can calculate EM�K� as the average number of
edges within the original subgraph K at the same time as the
G�G� sampling of the ccp calculation. In Figs. 2�d�–2�f� we
diagram ����n� for our three example networks. Since the
core is constructed to be highly interconnected it is no sur-
prise that ��� has a peak for small n. For the metabolic
network of Fig. 2�f� this peak is small. This is due to the
exceptionally high degrees �55 of the core vertices �includ-
ing substrates such as H2O and adenosine triphosphate�—
even in the null model networks this set of vertices will, for

FIG. 1. �Color online� Core-periphery structure of model net-
works. All networks have M =2N. The core-periphery model has the
parameter fcore=0.96 �i.e., the intended core consists of 4% of the
vertices� and �=3. All values are averaged over 104–105 network
realizations. The BA-model line is a fit to a power-law form �0

+�1N−�2 �this fit gives ccp���=�0=0.004�9��.

FIG. 2. �Color online� Radial statistics for three real-world networks. �a�–�c� show the average degree �k� of the n neighborhoods of the
core vertices as a function of n for three real world networks: a network of streets in Stockholm, Sweden �7�, a network of hyperlinked web
pages �14�, and the metabolic network of C. elegans �19�. Curves for our null model are included. In �d�–�f� we plot �—the number of edges
with in the n neighborhood relative to the expected number of edges given the degree sequence of the n neighborhood and the graph as a
whole. Lines are guides for the eyes.
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combinatorial reasons, be highly interconnected. For inter-
mediate n the ��� values are of the order of unity. But as n
increases, ��� grows to a sharp peak before it eventually
drops to zero. This seems like a rather ubiquitous feature �at
least it is present in almost all networks of Table I�. We
interpret this as that the periphery has both the two functions
listed above: To a certain distance from the core �defined by
the peak� vertices have similar function and are for this rea-
son connected; beyond this distance the network consists
only of cycle-free branches. This dichotomy—the network
inside and outside of the peak radius—is yet more distinct
than the core vs periphery as defined above. On the other
hand, the outside is functionally rather trivial and �in all
cases we study� smaller than the inside.

Many networks have subgraphs with very different char-
acteristics and function. Perhaps the simplest division of a
network is that into a core and a periphery. The core concept
has been used in various senses in the past; typically it is
defined as a subgraph which is most tightly connected �27�
or a most central �2�. Here we use the rather strong precepts
that a core should be both highly interconnected and central.
We propose a coefficient ccp to quantify this idea—a struc-
tural measure to complement quantities such as the cluster-
ing and assortative mixing coefficients. Different types of
networks have their characteristic ccp values: Geographically
embedded networks typically have positive ccp �a possible
effect of their communication-time optimization�. Social net-

work, on the other hand, typically have slightly negative ccp

values despite their positive degree-degree correlations. We
show that ccp for model networks such as the Erdös-Rényi,
Barabási-Albert, and Watts-Strogatz models goes to zero �or
at least to a very small value� as the network size increases.
�Preliminary studies show that it is possible to construct net-
works with a positive ccp in the large system limit.� Once the
core of a network is found one can construct a radial image
of the network by plotting quantities averaged over the n
neighborhoods of the core vertices as a function of n. One
such quantity we study is ��n , i�—the relative number of
edges within the n neighborhood of i to the expected number
of edges in a subgraph of the same set of degrees in the null
model. ��� shows, almost ubiquitously, a peak at intermedi-
ate n. We interpret this peak as an effective radius of the
network. Much remains to be done in terms of characterizing
the cores and peripheries of complex networks. We believe
this dichotomy and the radial imagery we present are very
useful tools to understand the large-scale architecture of such
networks.
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